

WEBINAR: Setting the cow up for success

Tips for measurement & prevention of ketosis

- 1. Ketosis overview
- 2. How to measure and interpret subclinical ketosis in transition and early lactation?
- 3. Tips for prevention of ketosis and improving peak milk/FCE

KETOSIS OVERVIEW

What is ketosis?

- A metabolic disorder measured by the level of ketone bodies in the blood
- Ketone bodies made up of beta-hydroxybutyrate, acetoacetate & acetone

What are these ketone bodies: BHB/BOHB, AcAc & Ac?

- These ketone bodies are produced as a secondary energy source alongside glucose as adipose tissue is mobilised
- However, high levels of adipose tissue mobilisation do not automatically mean high ketone bodies

How does ketosis relate to the liver?

- When the liver hepatocytes are "overloaded" by NEFA, they produce more ketone bodies as their capacity to convert NEFAs is limited
- This is where liver health and performance come into the equation, and why getting a complete picture of what's happening in the cow is critical when dealing with ketosis

NO KETOSIS

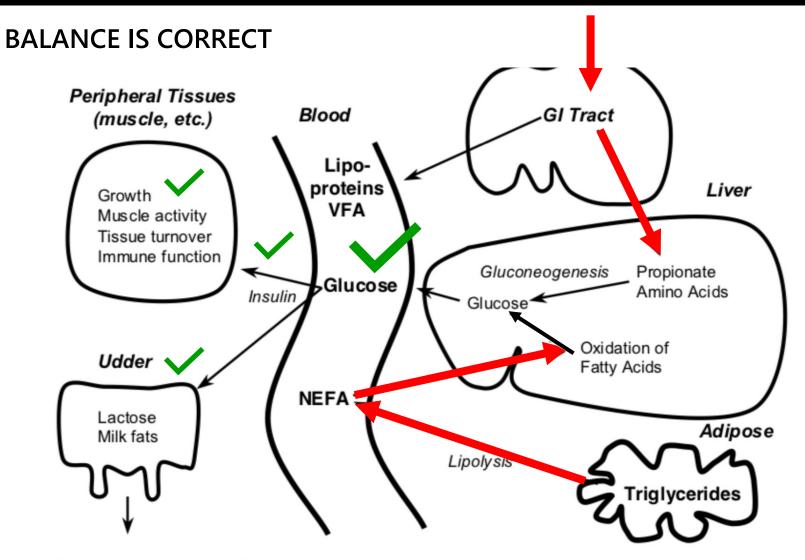


Figure 4. Schematic of glucose metabolism in a normal dairy cow.

- Liver **IS** getting sufficient propionic acid + amino acids
- Liver **IS** getting sufficient fatty acids + amino acids

OR

- 1. Fat mobilisation **IS** below the liver capacity limit
- 2. Liver **IS** oxidating NEFA efficiently

Cow function and milk production are **not** impaired

TYPE 1 KETOSIS: POOR NUTRITION

BALANCE IS OFF

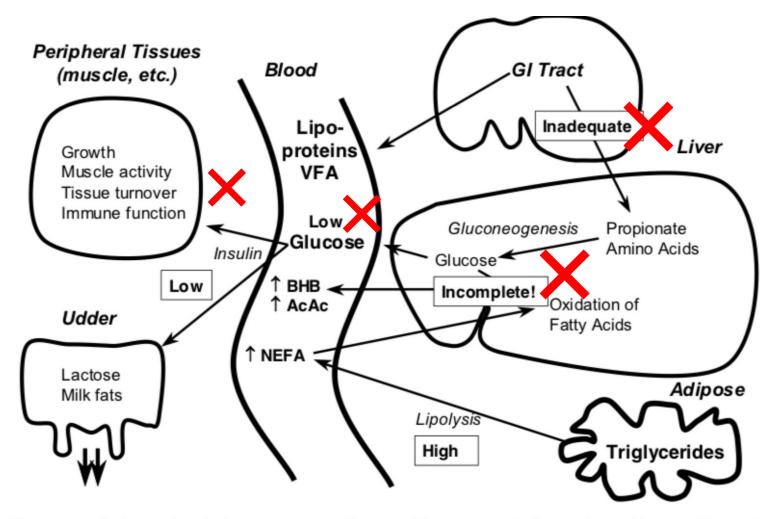
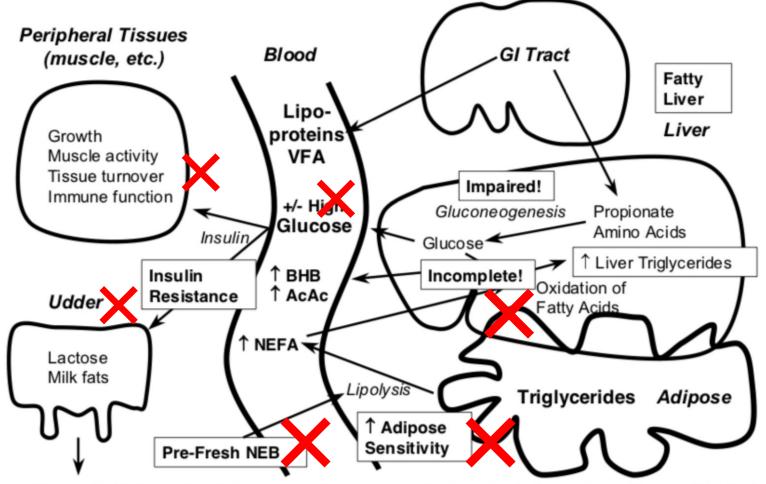


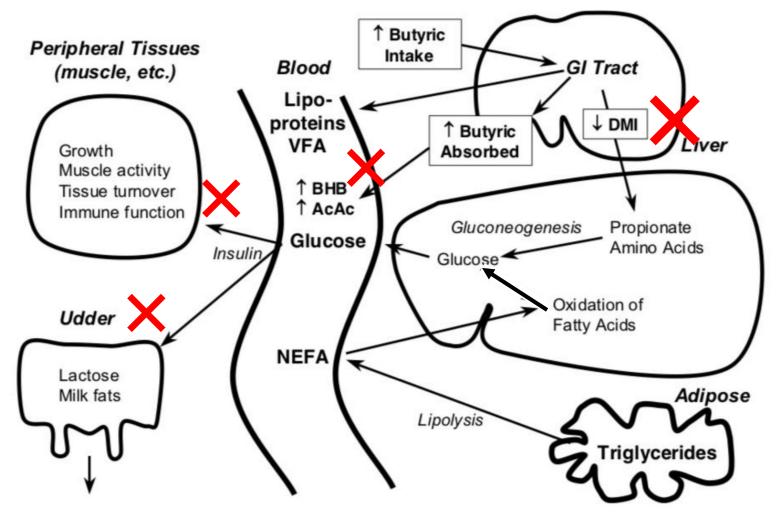
Figure 5. Schematic of glucose metabolism and ketone body formation with type I ketosis.

- Liver is NOT getting sufficient propionic acid and/or amino acids
- Liver CANNOT oxidate NEFA efficiently/completely
- NEFA, BHB & ACAC levels INCREASE
- NEFA entering the liver has reached liver capacity
- Cow function is impaired, milk production drop will follow

TYPE 2 KETOSIS: FAT COW/IMPAIRED LIVER

BALANCE IS <u>WAY</u>OFF




Figure 6. Schematic of glucose metabolism and ketone body formation with type II ketosis.

- Liver is getting sufficient propionic acid or amino acids
- Liver is overloaded with fat
- Gluconeogenesis IS restricted
- NEFA, BHB & ACAC levels continue to increase
- Fat mobilisation IS at a dangerous level
- Cow function and milk production are impaired
- Cow reproduction IS impaired from insulin resistance

TYPE 3 KETOSIS: BAD SILAGE

BALANCE IS OFF

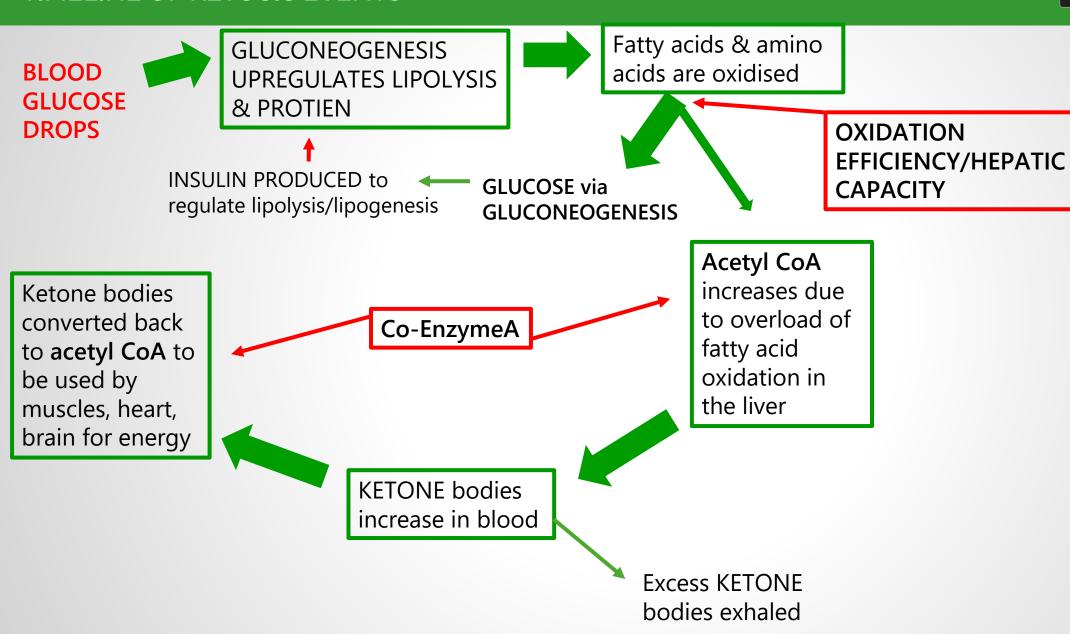


Figure 7. Schematic of glucose metabolism and ketone body formation in a dairy cow consuming excessive butyric acid from silage.

- High levels of butyric acid getting into the blood
- Liver is NOT getting sufficient propionic acid or amino acids due to depressed DMI
- Liver IS oxidating NEFA efficiently
- Only BHB & ACAC (liver damage) levels INCREASE
- Fat mobilisation is NOT above the dangerous level
- Cow function and milk production IS impaired

TIMELINE OF KETOSIS EVENTS

SIGNS & SYMPTOMS OF KETOSIS

Rapid condition loss

Downer cow/metabolic disease

Reduced appetite

Lacking energy

Cows are jumpy/ nervous

Excessive chewing, licking or salivating

Blood tests NEFA > 0.7 mEq/L BHB > 0.8 mmol/L

Sweet smelling breath

Unsteady on their feet

BLOOD TESTING FOR KETOSIS

Non-esterified fatty acid = NEFA

Pre-calving...<0.3...0.3-0.5...>0.5 mEq/L

Post-calving...<0.7...0.7-1.0...>1.0 mEq/L

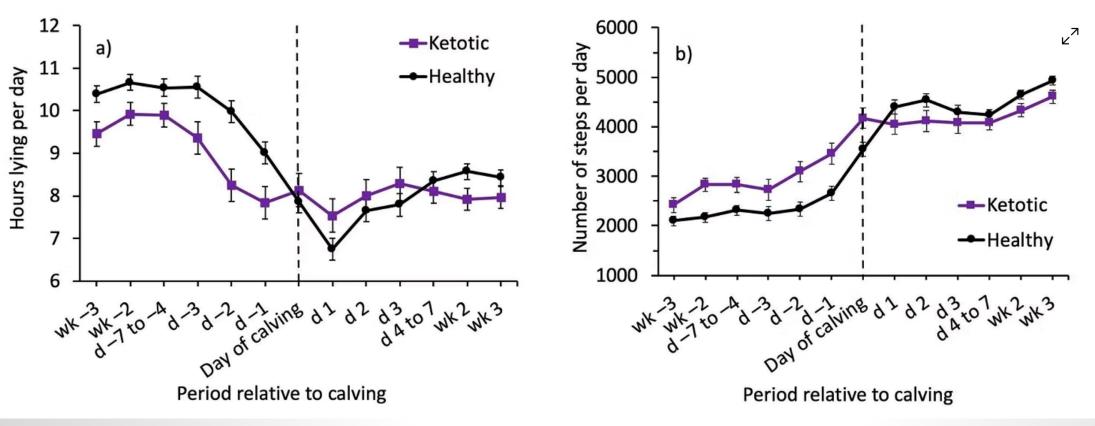
- Also known as free fatty acids
- Indicates the amount of fat being mobilised

Beta hydroxybutyrate = BHB/BHOB

Pre-calving...<0.4...0.4-0.7...>0.7 mEq/L

Post-calving...<0.8...0.8-1.2...>1.2 mEq/L

- Indication of how efficiently the cows are converting fatty acids into energy
- Can be skewed somewhat by high butyric acid feed


Liver function blood tests

- Glucose (Glu).....39-78 mg/dL
- Albumin (Alu).....3.2-3.8 g/dL
- Total cholesterol (TC).....3.0-6.0 mmol/L
- Total protein (TP).....6.0-8.3 g/dL
- Creatine kinase (CK)......<175 U/L
- Gama glutamyl transferase (GGT)......<45 U/L

Adapted from McArt et al., 2013, Bertoni & Trevisi et al., 2013, Zhang et al., 2023, Veshkini etal., & Drackley et al., 2024

COW ACTIVITY VIA WEARABLES & KETOSIS PREDICTION

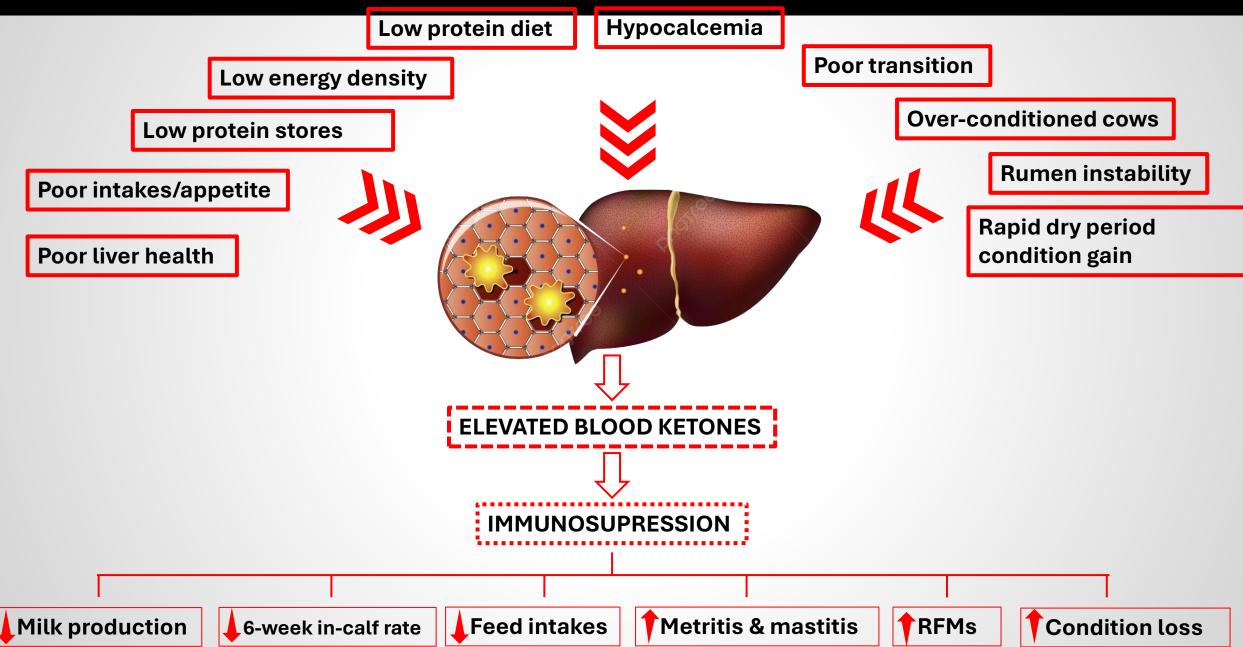
Sub-clinincal ketotic = >1.0mmol/L NEFA & BHB Healthy cows = <1.0mmol/L NEFA & BHB

- Research showed potential for ketosis prediction
- Lower lying mins pre-calving = Increased ketosis risk
- Higher activity mins pre-calving = Increased ketosis risk

Hendriks S., 2020

KETOSIS TREATMENTS

I am only going to cover nutritional/management solutions today


I want to focus on the triggers to help with solutions for prevention

TREATMENTS

- MPG
- Ketol
- Molasses/Soluble sugar
- Coated glucose?
-

TRIGGERS FOR KETOSIS

1. POOR TRANSITION FEEDING

- > Increase transition length out 21-28 days, ideal with history of ketosis.
- ➤ Calculate ME carefully: 90-130ME depending on LWT.
- > Quality and quantity of protein: 14-18% CP, AA quality is important.
- Calculate and manage the DCAD: particularly if history of low blood calcium.
- > Ensure trace minerals and key vitamins are supplemented.
- ➤ Betaine through transition and early lactation can help: 15g/cow/day.

2. POOR APPETITE LINKED TO HYPOCALCEMIA

- > Confirm with full spectrum blood testing.
- > Look at the transition diet, as per previous slide.
- > Adjust calcium sources/availability in colostrums.
- Increase calcium and switch to higher bioavailable Ca sources short-term.
- Quality starch and quality protein will improve appetite.
- Calcium bolus for at-risk cows can be a short-term solution, but still needs to fix the underlying issue.

3. LOW FEED INTAKE: RUMEN INSTABILITY/STRESS

- This is shown by variable milk volumes and low fat% in milk.
- > Can also show in poor immune system function.
- Stabilise the rumen with calsea/rumen buffer and live yeast/yeast metabolite.
- Make sure the balance of fibre with carbohydrate is correct.
- Increasing glucogenesis will help refire appetite, increase starch and quality protein.

4. LOW ENERGY DENSITY OF DIET

- Low grass availability/quality, wet weather, and low sunlight hours all culminate to make feed energy density a challenge.
- Quality feed supplements are the first critical element.
- > Having highly palatable feed is also important.
- > Starch and sugars are often an easy way to lift energy density quickly and easily grain and molasses.
- Make sure you match energy density with quality protein, or you will trade one deficiency for another.
- Make sure phosphorus and calcium levels are properly balanced, as glucose and sugar utilisation require more phosphate.
- > Transition onto starch and having rumen stability tools like calsea and yeast is important for good starch utilization.

5. RUN OUT OF STORED AMINO ACIDS

- ➤ Often seen 10-14 days into lactation when rumination, production drops, and it can trigger rapid condition loss. Protein stores have run dry.
- > 30% of protein requirements must be pulled from the muscle in early lactation until intakes match production
- Feeding good quality protein through the dry period, transition, and early lactation period is the best way to prevent protein stores from running out
- Soya meal, quality canola, single-cell protein or straight amino acids. Methionine will help.

6. POOR LIVER FUNCTION

- Seeing poor appetite, condition loss, immune system issues or bloods showing high NEFA/BHB and low albumin/glucose/cholesterol.
- > This requires a combined approach: feed + additives.
- Increasing the energy and protein density of the diet alongside rumen stabilisers, as the rumen will already be stressed. This will increase propionate going to the liver.
- > Betaine to help clean fat out of the liver and increase efficiency, giving the liver a chance to repair and insulin sensitivity to come down.
- > Chromium will help to increase insulin sensitivity.
- > B-group vitamins and selenium might also be needed for liver repair.

7. OVER-CONDITIONED COWS

- Cows have wintered better than expected and are above 5.5BCS on average.
- ➤ High cow condition means more stored fat, which can mean a higher susceptibility to ketosis.
- ➤ We can manage this by carefully managing and monitoring the transition diet: Maintenance ME, but do not underfeed!
- > Feeding the early lactation cows a high-energy energy-dense diet.
- ➤ High-energy starter drenches can help along with betaine through transition and early lactation.
- ➤ If ketosis issues start, use all the techniques from the previous slide "Poor Liver Function".

8. High Visceral/Abdominal Fat

- Slightly over-conditioned cows are not always an issue it's the dynamics of fat mobilisation that are.
- There are three types of fat deposition in cows: Subcutaneous (under skin), visceral (around organs) and muscular.
- When cows gain condition quickly, they build more visceral fat.
 When cows gain condition slowly, they build more subcutaneous fat.
- There is an association between higher levels of visceral fat and a higher risk of ketosis.
- > Building/maintaining good condition in our cows is critical, but building it slowly is just as critical.

FEED ADDITIVE TOOLS FOR KETOSIS

- 1. Copper/zinc/manganese
- 2. Quality protein
- 3. Quality starch
- 4. B-group vitamins
- 5. Betaine: 15g/cow/day
- 6. Selenium: RP 8mg/cow/day
- 7. Chromium: 9mg/cow/day
- 8. Boron:120mg/cow/day
- 9. Calsea/yeast: 50-70gm/3gm
- 10. Monensin: 300mg/cow/day

THANK YOU FOR ATTENDING

For more information and previous webinars:

- Visit our website: www.agvance.co.nz
- Talk to your local Agvance Consultant
- Email me at: shaunb@agvance.co.nz
- Call me on: 021644035